

Engineering Note

# EN-	007-0242
NAME:	Engineering
REV:	NC

CICOIL CABLE EXPOSURE TO HEAT AND UV RADIATION

CICOIL CABLE PROPERTIES ARE COMPARED TO LIKE MATERIALS

AFTER UV AND HEAT EXPOSURE

The inherent chemical properties of Flexx-SilTM make for a strong, durable, and UV resistant material. Flexx-SilTM outperforms thermoplastics such as Polycarbonate (PC) and Poly(methyl methacrylate) (PMMA) when exposed to UV radiation. As with most organic compounds, PC and PMMA are made of branched alkane groups. The energy needed to break the bonds of these thermoplastics can be dependent on many factors. These factors include, but are not limited to, orientation in space, surrounding atoms in the carbon chains and number of bonds (i.e. single, double or triple bonding). Even though many factors contribute to the bonding strength of these materials, the energy needed to break the bonds of Flexx-SilTM is approximately 30% higher than the energy needed to break the bonds of single carbon chains found in organic plastics or other like materials. Thermoplastics do not typically possess long-term durability to thermal or UV light exposure. The table below compares the property characteristics and durability of Flexx-SilTM other like materials:

Category	Property	Flexx-Sil Rubber	PC	PMMA	Glass
	Transmission [%]	94	86~89	89~92	92
Properties of Material	Index of Refraction (RI)	1.41	1.59	1.49	1.5~1.6
Clarity	Haze %	<1	1-3	2-4	-
	Yellowness index	<1	1.0~3.0	1.0~3.0	-
	Heat resistance	Excellent	Poor	Poor	Excellent
Durability	UV resistance	Excellent	Poor	Good	Excellent

Figure 1: Property Characteristics and Durability for Flexx-SilTM and other like Materials

This table measures the characteristic properties of Flexx-SilTM to other known materials. As shown, Flexx-SilTM out-performs other materials in its class. It has higher heat and UV resistance than PC and PMMA. The transmission % is 94, index of refraction is 1.41, haze % is less than 1, and yellowness index is also less than 1. This table supports that Flexx-SilTM ranks higher in UV resistance than its competitors. This also validates that Flexx-SilTM is a leader in jacketing materials.

Along with UV-resistance, Flexx-SilTM also demonstrates great heat stability. This is shown to be true at extremely high temperatures. Compared to other thermoplastics, Flexx-SilTM continues to show long-term performance with a low yellowness index.

Figure 2: Yellowness Index Change for Flexx-Sil[™] and other like Materials over 6,000 Hours.

As shown in Figure 2, Flexx-SilTM, PC, Cyclic Olefin Polymer (COP), and PMMI have all been exposed to 160°C (320°F) over a period of 0 hours, 170 hours, 500 hours and finally, 6,500 hours. Flexx-SilTM is the only material that has maintained a Yellowness Index of <5 after extreme exposure to heat over time. All other materials have compensated their structure after such exposer.

Lastly, the below shows the material's yellowing after such exposure, comparatively.

	-			
		1 Carl		
PMMA	PMMI	PC	COP	Fleyy-Sil

Figure 3: Yellowing in Flexx-SilTM Material and other like Materials over 6,000 Hours.

Figure 3 provides visible proof of Flexx-Sil'sTM ability to withstand yellowing after vulnerability to high amounts of heat over long periods of time in contrast to its leading adversaries. Flexx-SilTM is a top choice when looking for a jacketing material capable of tolerating high amounts UV and heat exposure over time.

Please contact CICOIL for more information.

(661)295-1295 **CICOIL**

techsupport@cicoil.com Or on the web at: cicoil.com